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Abstrad The thermodynamic Bethe msan equations for the amactive Hubbard chain are 
solved numerically. The entmpy, specific heat, y-values, band filling, spin and charge 
susceptibilities are obtained as a function of temperature, interaction strength and chemical 
potential in zem magnetic field. The dominant states at low temperatures are spin-paired 
electrons. The spin susceptibility is vanishingly small at low temperatures due to the spin 
gap. 

1. Introduction and Bethe unsatz equations 

The discovery of the high-T, superconductors has renewed the interest in low-dimensional 
systems. In particular, the repulsive Hubbard model has been the focus of many authors 
since it is expected to describe the basic physics of these materials [I]. However, studies 
indicate that the purely 2D Hubbard model does not show superconductivity [2]. On the 
contrary, the attractive Hubbard model yields, by construction, superconductivity. 

Even though the relevant physics is expected to occur in at least two dimensions, the 
study of the one-dimensional case is important since an exact solution is available via 
the Bethe ansatz. In this paper we consider this exact solution for the attractive Hubbard 
chain. The ground-state equations were obtained long ago [3] and the low-energy excitations 
have been studied [4]. The gap in the spin excitations and the lower critical field of the 
magnetization curve have also been considered [SI. 

The thermodynamic Bethe ansafz equations for this model have also been obtained 
[6, 71 extending previous results for the repulsive Hubbard chain 18, 91. In the rest of this 
paper we solve numerically these equations. First, we present the thermodynamic Bethe 
ansae equations [6] and briefly review the numerical method to solve them. In section 
2 we present results for the entropy, specific heat, y-values. band filling, spin and charge 
susceptibilities as a function of temperature, interaction strengh and chemical potential in 
zero magnetic field. We conclude with section 3. 

We consider the Hubbard chain described by the Hamiltonian 

li = - (c!vci+,.o + ci+l,,,ciu) - U E n i t n i l  (1) 
io 

t where c,, creates an electron of spin o at site i and ni- = C!~C~, ,  (with U > 0). I t  is well 
known that the repulsive and attractive models are related through unitary transformations 
like 191 

Q(U,  T, A, H )  = H - A + Q -U, T, H - -, A - - 
2 2 (2), 
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or 

Q(-U, T, A ,  H) = ~ H  - A + Q  U, T ,  H + - , A  + - (3) 

where Q is the thermodynamic potential, A is the chemical potential and H is the magnetic 
field. In this paper we will solve the equations obtained directly for the attractive case. 
Using equation (3) we can obtain results for the repulsive Hubbard chain in a chemical 
potential H + U/2 and in a magnetic field A + U/2 .  

A convenient way to write the thermodynamic Bethe ansatz equations is the recursion 
sequence [S, 9,6] 

( 2 "> 2 

dAs(A - sin k)Re 1 - A - i- J In:(k) = -- 
2c0s T + T S" -m 

lnql(A) = s * l n ( l  + q z ( A ) ) +  dks(A-sink)In(l+:-'(k))cosk ( 5 )  

Inq;(A) = s * l n ( l  + q k ( A ) ) +  dks(A-sink)In(l+g(k))cosk (6) 

where n = 2, 3, 4, __. and where these functions satisfy the asymptotic conditions 
1 2H 

lim - In qn = - 
n-m n T 

1 , -u-2A 
T '  lim - h q n  = 

n+m n 
The star denotes convolution and 

1 1 
U coshf2zA/U) 

s(A) = - 

The free energy per site is given by 

where EO is the ground-state energy, 

and 

The functions g, q: and qn are related to the potential functions of the three types of 
excitation of the model [6]: (i) real momenta corresponding to unpaired propagating 
electrons (charge degrees of freedom), (ii) complex momenta corresponding to a pair of 
electrons or bound states of pairs of electrons @air degrees of freedom) and (iii) complex 
rapidities corresponding to spin-bound states forming so-called strings (spin degrees of 
freedom), respectively. 
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Since the local interaction is attractive (I), the~ground state is formed of spin-singlet 
pairs of electrons of the Cooper-pair type. For a less than half-filled band at zero magnetic 
field all electrons are paired into these states, which move freely throughout the chain. The 
effect of a magnetic field is to break the singlet but a finite magnetic field (critical field) [5. 
71 is needed to break the pairs. Therefore, at T = 0 a minimum magnetic fieId is needed 
to originate a magnetic response of the system. 

For T > 0 the pairs tend to be promoted to higher-energy states where bound states 
of pairs appear as the dominant states: the Cooper pairs are not broken up at finite T 
[6]. Therefore the magnetic (spin) response is vanishingly small. The excitation spectrum 
resembles a degenerate Bose gas of Cooper pairs. 

In summary, the three types of state of the system are [6]: (i) Cooper pairs and their 
collective excitations (analogous to magnons in the Heisenberg chain) having a charge -2e 
and spin zero, (ii) unpaired electrons obeying Fermi statistics with a charge -e and spin 
1 2 and (iii)  spin^ excitations. Contrarily to the repulsive case, the spin excitations do not 

where Hc is the critical field). At high T the importance of the Cooper-pair-type excitations 
decreases gradually and as T + 00 the system behaves like a free-electron gas (if U is not 
very large). 

Equations (4)-(14) can be solved in special limits [4-71. (i) In the large-U limit all 
electrons are paired and in the ground state only free pairs exist. (ii) In the U + 0 limit 
the free-electron case is recovered. (iii) In the T + 00 limit the three types of excitation 
decouple. (iv) In the T + 0 limit the electrons are either spin paired or unpaired and no 
bound states of pairs of electrons contribute [6, 71. (v) In the low-T limit the specific heat 
(for a less-than-half-filled band) is linear in T with a y-value which shows a discontinuity 
as U -+ 0 for all fillings, in contrast to the repulsive case which only shows a discontinuity 
at half filling. This is due to the excitation gap for the unpaired electron  states.^ Hence, 
the limits U -+ 0 and T + 0 cannot be interchanged [4, 6, 71. (vi) There is a critical 
field below which there are no unpaired electrons in the ground state and which grows with 
U (since the pairs are more tightly bound). (vii) The ground state magnetization vanishes 
for H < Hc and saturates for H > Hs [7]. (viii) The y-value is constant for H < H,, it 
diverges when H is slightly above (below) H, (H,) and is again constant (with zero value 
at half filling) for H > Hs since the electron gas is fully polarized [7]. 

In the intermediate-temperature regime equations (4)-(14) have to be solved numerically. 
The procedure is standard [IO, 111. The infinite sequences are truncated to a finite number 
of equations n,, and the integrals over the rapidity A truncated at -A, and A, where the 
functions have reached their asymptotic values. The equations are then solved in a finite 
mesh of points and the convergence of the numerical derivatives of the free energy P is 
studied varying the parameters n,, A, and the density of points of the discrete mesh. The 
accuracy is expected to be better than a few per cent. SimiIar calculations were performed 
previously for the repulsive case [12, 131. 

We obtain the free energy per site, equations (l2)-(14), solving numerically equations 
(4)-(8) with the asymptotic conditions equations (9) and (10) as a function of U, T, A 
and for a small magnetic field, H. The first and second temperature derivatives yield the 
entropy, C/T and the specific heat (C) .  We also obtain the zero-field spin susceptibility 
(x.), The first and second chemical-potential derivatives yield the band filling (n)  and the 
charge susceptibility (xc). 

The limits U << 1 and U >> 1 are difficult to obtain numerically. As stated above, due 
to the excitation gap for the unpaired electron states, the physical situations U + 0 and 
U = 0 are qualitatively different [4, 61 for all band fillings. As a consequence, for instance 

~ play a relevant role in the low-temperature limit [6] (due to the spin gap and at H < H,, 
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the y-values show a discontinuity as U -+ 0. This discontinuous behaviour requires a 
very high numerical accuracy which, with the method used here, is increasingly difficult to 
control as T is lowered. Also, as U becomes large (U - 8) the numerical method becomes 
unreliable at low T and therefore we do not include results for values of U > 4. 
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Figuv 1. (a) Entropy, (b) C / T  and (c) specific hear againsf T ar half filling for U = 1. 2, 4. 

2. Results 

We consider first the temperature derivatives of the free energy. In figure 1 we show (a) 
the entropy, (b) C / T  and (c) the specific heat, at half filling (n = 1 and A = -U/2), as 
a function of temperature for the values of the interaction U = 1,2,4.  As T + cc the 
entropy (figure l(a)) tends to In4 as in the repulsive case. As T + 0 the entropy tends to 
zero showing that the ground state is a singlet. As T grows the Cooper-pair singlets are 
promoted to higher bound states of pairs or are broken and since the binding energy grows 
with U the entropy is smaller for higher values of U. In figure l(b) we show C / T  as a 
function of temperature for the same set of values of U at half filling. In the zero-T limit 
y = (C/T)(T + 0) has been obtained before [6] and 

where Io and 1, are Bessel functions. For very small U ,  y + 7r/6 (as for the repulsive case 
[9]). However, at U = 0 (freeelectron gas) y = n/3. There is therefore a discontinuity 
around U = 0 which is due to the spin gap [4]. (15) shows that y grows with U (linearly 
for large U ) .  As T grows from zero C/T goes through a maximum which increases with 
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U .  The specific heat at half filling as a function of T is shown in figure I(c) for the 
same values of the interaction. The specific-heat peak decreases in height as U grows, in 
agreement with figure I(a) for the entropy, and shifts towards lower T values. 

B 
5 

Taw- Imgem” 

Figure 2. (a) Entropy and @) CIT against T for several values of n for U = 2 
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Figure 3. (a) Entropy and @) CIT against T for several values of n for U = 4. 

In figures 2 and 3 we show (a) the entropy and (b) C / T  as a function of temperature 
for the values of U = 2 and U = 4, respectively, at constant band filling for several values 
of n. For the two values of U the entropy decreases as the the band filling decreases. The 
curve for n = 0.9 is very close to the one for the half-filled case. At low T the entropy 
is larger for smaller band fillings than for the half-filled case (for U = 2)  but as U grows 
(U = 4) the ordering of the curves observed at high temperatures extends to lower T. (as 
clearly seen for n = 0.3 in figure 3(a). 

In figures 2(b) and 3(b) we show C / T  at constant band filling as a function of 
temperature for the values U = 2 and U = 4, respectively. At half filling the curve 
shows a maximum as discussed above. At zero T ,  y increases as the band filling decreases 
(see figure 7 of [7]) and diverges in the empty-band limit as a consequence of the van Hove 
singularity in the density of states. For U = 2 the curves with n c 1 show a second peak 
at low T .  For U = 4 this peak shifts to lower temperatures below the range where the 
numerical procedure used here is accurate (T < 0.01). The height of the second peak for 
U = 2 grows rapidly as n decreases. 

The specific heat at constant band filling as a function of T is shown in figure 4 for 
U = 1 and for several band fillings. For n between half filling (n = 1) and quarter filling 

(Io 0.0 
0.0 
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Figure 4. Specific heat against T for U = 1 for sevenl 
values of the band filling. 

Figure 5. Band filling against T for U = 2 for several 
v a l ~ c s  of the chemical potential. 

(n > 0.5) the specific heat shows a peak around T - 0.6. For n < 0.5 the largest peak is 
now centred around T - 1.7. There is still some evidence of the lower-T peak for n = 0.5. 
For n = 0.6 the peak broadens considerably and centres around T - 0.9-1. 

In figure 5 we show the band filling at constant chemical potential, as a function of T 
for the value U = 2. As T (T > 1) grows the band filling increases at constant A specially 
for the smaller band fillings. In the low-T limit the behaviour is not monotonic and the 
curves display a minimum at a temperature that decreases (tends to zero) as ( A (  grows. 

Temperaturf 

Figure 6. Spin susceptibility against T for U = 2 for n = I and 0.5. 

In figure 6 we show the spin susceptibility as a function of T at constant band filling 
for U = 2. As T -+ 0 the spin susceptibility is vanishingly small due to the spin gap [14]. 
At zero T there is no magnetic response to an external field and as T grows the magnetic 
response is still very small, since the dominant states are still the Cooper pairs promoted to 
bound states and therefore the spin excitations do not contribute at very low T [6]. As T 
grows further xs goes through a maximum. xs is very insensitive to n. 
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Figure 7.~Charge susceptibility against T for (a) U = I and (b) U = 4 for n = 1 ,  0.7. 0.5. 0.3. 

The charge susceptibility for (a) U = 1 and (b) U = 4 is shown in figure 7 as a function 
of T at constant band filling. As T + 0 the charge susceptibility tends to a finite value 
which at half filling grows with the value of [14]. As T grows, the curves at half filling 
develop a maximum that also grows with U .  As n decreases from n = 1 the peak grows 
and shifts to lower temperatures for U = 1. For U = 4 the behaviour is not monotonic as 
for U = 1 and there is an inversion in the peak height and position when n - 0.5. 

0.0 02  014 0.6 0.8 
BmdFilling 
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Figure 8. Charge susceptibility against band filling for T = 0.05 with U a parameter. 

In figure 8 we present the charge susceptibility as a function of the band filling. We 
compare,)(, at constant T = 0.05 as a function of band filling for the three values.of the 
interaction U = 1,2,4. It shows a maximum that grows with U and that shifts to higher 
values of the band filling also as U grows. For a fixed value of U the curves for xc show 
a maximum as a function of the band filling that grows as T decreases and shifts to lower 
values of the band filling [14]. 

3. Summary 

We have presented exact results (within the accuracy of the numerical procedure) for 
the thermodynamics of the attractive Hubbard chain. Unitary transformations establish 
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relations between the repulsive and the atmctive Hubbard chains. Roughly speaking in 
these transformations the roles of the spin and charge degrees of freedom are interchanged. 
In the repulsive case the spin degrees of freedom play an important role (in particular if U 
is large) and the ground-state charge fluctuations are strongly suppressed (xc  = 0) at half 
filling due to the Mott-Hubbard gap. Similarly, in the attractive case the ground-state spin 
susceptibility is zero due to the spin gap of the Cooper-pair singlets formed due to the local 
attractive interaction. As a consequence of the gap at half filling the limit U + 0 in the 
repulsive case shows a discontinuous behaviour with respect to the exactly free-electron gas 
[4. 91. Since the spin gap in the attractive case prevails €or all band fillings (less than half 
filling) this discontinuous behaviour as U + 0 is observed for all band fillings and xs + 0 
as T + 0. In the repulsive case both x s  and y are finite as T + 0. It was also found 
previously that (at T = 0) xc and y diverge close to half filling in the repulsive case [15]. 
Also, for finite and small T these quantities show anomalies close to half filling 112, 131. 
The divergence in y was interpreted as due to the charge contribution to the specific heat 

In this work we have presented results for the entropy, specific heat, C / T ,  n, x s  and 
xc as a function of T .  As expected, the entropy yielded a singlet ground state and a finite 
C / T  as T + 0. The spin susceptibility is vanishingly small at low T confirming that the 
dominant states for T > 0, although small, are still the Cooper-pair singlets, independent 
of the band filling and confirming that the spin excitations do~not contribute significantly at 
low T [6, 71. 

We found a double-peak structure in C / T  for n < 1 which shifts to very low T as U 
grows. Also, we found a shift in the peak position of the specific heat as a function of 
temperature as n decreases from half filling through quarter filling and to the empty-band 
limit. As for C / T  at constant and low band filling, xc peaks strongly (as compared to the 
half-filled case) at low n and low T,   we also found that xe shows a maximum at low T as 
a function of band filling which peaks and shifts to lower values of n as T decreases [14]. 
For a specified value of T the height of the peak grows with U and appears at higher band 
fillings. 

~ 3 1 .  
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